Atari Environment
Integration of Atari 2600 games with the OpenEnv framework via the Arcade Learning Environment (ALE). ALE provides access to 100+ classic Atari games for RL research.
Supported Games
ALE supports 100+ Atari 2600 games including:
Popular Games
- Pong - Classic two-player tennis
- Breakout - Break bricks with a ball
- Space Invaders - Shoot descending aliens
- Pac-Man / Ms. Pac-Man - Navigate mazes and eat pellets
- Asteroids - Destroy asteroids in space
- Defender - Side-scrolling space shooter
- Centipede - Shoot segmented centipede
- Donkey Kong - Jump over barrels to save princess
- Frogger - Cross road and river safely
- Q*bert - Jump on pyramid cubes
And many more! For a complete list, see [ALE documentation](https://ale.farama.org/environments/complete_list/).
Architecture
┌────────────────────────────────────┐
│ RL Training Code (Client) │
│ AtariEnv.step(action) │
└──────────────┬─────────────────────┘
│ HTTP
┌──────────────▼─────────────────────┐
│ FastAPI Server (Docker) │
│ AtariEnvironment │
│ ├─ Wraps ALEInterface │
│ ├─ Handles observations │
│ └─ Action execution │
└────────────────────────────────────┘
Installation & Usage
Option 1: Local Development (without Docker)
Requirements:Python 3.11+ale-py installed: pip install ale-pyfrom envs.atari_env import AtariEnv, AtariAction
Start local server manually
python -m envs.atari_env.server.app
Connect to local server
env = AtariEnv(base_url="http://localhost:8000")
Reset environment
result = env.reset()
print(f"Screen shape: {result.observation.screen_shape}")
print(f"Legal actions: {result.observation.legal_actions}")
print(f"Lives: {result.observation.lives}")
Take actions
for _ in range(10):
action_id = 2 # UP action
result = env.step(AtariAction(action_id=action_id, game_name="pong"))
print(f"Reward: {result.reward}, Done: {result.done}")
if result.done:
break
Cleanup
env.close()
Option 2: Docker (Recommended)
Build Atari image:cd OpenEnv
Build the image
docker build \
-f src/envs/atari_env/server/Dockerfile \
-t atari-env:latest \
.
Run specific games:Pong (default)
docker run -p 8000:8000 atari-env:latest
Breakout
docker run -p 8000:8000 -e ATARI_GAME=breakout atari-env:latest
Space Invaders with grayscale observation
docker run -p 8000:8000 \
-e ATARI_GAME=space_invaders \
-e ATARI_OBS_TYPE=grayscale \
atari-env:latest
Ms. Pac-Man with full action space
docker run -p 8000:8000 \
-e ATARI_GAME=ms_pacman \
-e ATARI_FULL_ACTION_SPACE=true \
atari-env:latest
Use with from_docker_image():from envs.atari_env import AtariEnv, AtariAction
import numpy as np
Automatically starts container
env = AtariEnv.from_docker_image("atari-env:latest")
result = env.reset()
result = env.step(AtariAction(action_id=2)) # UP
Reshape screen for visualization
screen = np.array(result.observation.screen).reshape(result.observation.screen_shape)
print(f"Screen shape: {screen.shape}") # (210, 160, 3) for RGB
env.close() # Stops container
Observation Types
1. RGB (Default)
Shape: [210, 160, 3]Description: Full-color screen observationUsage: Most realistic, good for vision-based learningdocker run -p 8000:8000 -e ATARI_OBS_TYPE=rgb atari-env:latest
2. Grayscale
Shape: [210, 160]Description: Grayscale screen observationUsage: Reduced dimensionality, faster processingdocker run -p 8000:8000 -e ATARI_OBS_TYPE=grayscale atari-env:latest
3. RAM
Shape: [128]Description: Raw 128-byte Atari 2600 RAM contentsUsage: Compact representation, useful for specific researchdocker run -p 8000:8000 -e ATARI_OBS_TYPE=ram atari-env:latest
Action Spaces
Minimal Action Set (Default)
Game-specific minimal actions (typically 4-9 actions).
Pong: 6 actions (NOOP, FIRE, UP, DOWN, etc.)Breakout: 4 actions (NOOP, FIRE, LEFT, RIGHT)docker run -p 8000:8000 -e ATARI_FULL_ACTION_SPACE=false atari-env:latest
Full Action Set
All 18 possible Atari 2600 actions:
0. NOOP
1. FIRE
2. UP
3. RIGHT
4. LEFT
5. DOWN
6. UPRIGHT
7. UPLEFT
8. DOWNRIGHT
9. DOWNLEFT
10. UPFIRE
11. RIGHTFIRE
12. LEFTFIRE
13. DOWNFIRE
14. UPRIGHTFIRE
15. UPLEFTFIRE
16. DOWNRIGHTFIRE
17. DOWNLEFTFIRE
docker run -p 8000:8000 -e ATARI_FULL_ACTION_SPACE=true atari-env:latest
Configuration
Environment Variables
ATARI_GAME: Game name (default: "pong")ATARI_OBS_TYPE: Observation type - "rgb", "grayscale", "ram" (default: "rgb")ATARI_FULL_ACTION_SPACE: Use full action space - "true"/"false" (default: "false")ATARI_MODE: Game mode (optional, game-specific)ATARI_DIFFICULTY: Game difficulty (optional, game-specific)ATARI_REPEAT_ACTION_PROB: Sticky action probability 0.0-1.0 (default: "0.0")ATARI_FRAMESKIP: Frames to skip per action (default: "4")Example: Breakout with Custom Settings
docker run -p 8000:8000 \
-e ATARI_GAME=breakout \
-e ATARI_OBS_TYPE=grayscale \
-e ATARI_FULL_ACTION_SPACE=true \
-e ATARI_REPEAT_ACTION_PROB=0.25 \
-e ATARI_FRAMESKIP=4 \
atari-env:latest
API Reference
AtariAction
@dataclass
class AtariAction(Action):
action_id: int # Action index to execute
game_name: str = "pong" # Game name
obs_type: str = "rgb" # Observation type
full_action_space: bool = False # Full or minimal action space
AtariObservation
@dataclass
class AtariObservation(Observation):
screen: List[int] # Flattened screen pixels
screen_shape: List[int] # Original screen shape
legal_actions: List[int] # Legal action indices
lives: int # Lives remaining
episode_frame_number: int # Frame # in episode
frame_number: int # Total frame #
done: bool # Episode finished
reward: Optional[float] # Reward from last action
AtariState
@dataclass
class AtariState(State):
episode_id: str # Unique episode ID
step_count: int # Number of steps
game_name: str # Game name
obs_type: str # Observation type
full_action_space: bool # Action space type
mode: Optional[int] # Game mode
difficulty: Optional[int] # Game difficulty
repeat_action_probability: float # Sticky action prob
frameskip: int # Frameskip setting
Example Script
#!/usr/bin/env python3
"""Example training loop with Atari environment."""
import numpy as np
from envs.atari_env import AtariEnv, AtariAction
Start environment
env = AtariEnv.from_docker_image("atari-env:latest")
Training loop
for episode in range(10):
result = env.reset()
episode_reward = 0
steps = 0
while not result.done:
# Random policy (replace with your RL agent)
action_id = np.random.choice(result.observation.legal_actions)
# Take action
result = env.step(AtariAction(action_id=action_id))
episode_reward += result.reward or 0
steps += 1
# Reshape screen for processing
screen = np.array(result.observation.screen).reshape(
result.observation.screen_shape
)
# Your RL training code here
# ...
print(f"Episode {episode}: reward={episode_reward:.2f}, steps={steps}")
env.close()
Testing
Local Testing
Install dependencies
pip install ale-py fastapi uvicorn requests
Start server
cd /Users/sanyambhutani/OpenEnv/OpenEnv
export PYTHONPATH=/Users/sanyambhutani/OpenEnv/OpenEnv/src
python -m envs.atari_env.server.app
Test from another terminal
python -c "
from envs.atari_env import AtariEnv, AtariAction
env = AtariEnv(base_url='http://localhost:8000')
result = env.reset()
print(f'Initial obs: {result.observation.screen_shape}')
result = env.step(AtariAction(action_id=2))
print(f'After step: reward={result.reward}, done={result.done}')
env.close()
"
Docker Testing
Build and run
docker build -f src/envs/atari_env/server/Dockerfile -t atari-env:latest .
docker run -p 8000:8000 atari-env:latest
Test in another terminal
curl http://localhost:8000/health
curl -X POST http://localhost:8000/reset
Popular Games and Their Characteristics
| Game | Minimal Actions | Lives | Difficulty | Notes |
|------|----------------|-------|-----------|-------|
| Pong | 6 | 1 | Low | Good for learning basics |
| Breakout | 4 | 5 | Medium | Classic RL benchmark |
| Space Invaders | 6 | 3 | Medium | Shooting game |
| Ms. Pac-Man | 9 | 3 | High | Complex navigation |
| Asteroids | 14 | 3 | Medium | Continuous shooting |
| Montezuma's Revenge | 18 | 5 | Very High | Exploration challenge |
| Pitfall | 18 | 1 | High | Platformer |
| Seaquest | 18 | 3 | High | Submarine rescue |
Limitations & Notes
Frame perfect timing: Some games require precise timingExploration: Games like Montezuma's Revenge are notoriously difficultObservation delay: HTTP adds minimal latency vs local gymDeterminism: Set ATARI_REPEAT_ACTION_PROB=0.0 for deterministic behaviorROMs: All ROMs are bundled with ale-py packageReferences
[Arcade Learning Environment Paper (2013)](https://jair.org/index.php/jair/article/view/10819)[ALE GitHub](https://github.com/Farama-Foundation/Arcade-Learning-Environment)[ALE Documentation](https://ale.farama.org/)[Gymnasium Atari Environments](https://gymnasium.farama.org/environments/atari/)Citation
If you use ALE in your research, please cite:
@Article{bellemare13arcade,
author = {{Bellemare}, M.~G. and {Naddaf}, Y. and {Veness}, J. and {Bowling}, M.},
title = {The Arcade Learning Environment: An Evaluation Platform for General Agents},
journal = {Journal of Artificial Intelligence Research},
year = "2013",
month = "jun",
volume = "47",
pages = "253--279",
}